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SUMMARY: 

An unprecedented amount of data has been accumulated in recent decades by means of numerical, experimental, and 

field-measurement of vortex-induced vibration (VIV) of circular cylinders, and then benefited from the development 

of machine learning (ML) algorithms and computers, which make it available to study VIV using ML. In this study, 

ML models are developed for predicting the maximum amplitude 𝑌∗ and amplitude response-reduced wind speed 

curves of circular cylinders undergoing VIV. The published literature data are aggregated as a dataset. Three ML 

models, support vector regression with particle swarm optimization (PSO+SVR), extreme learning machine (ELM) 

and ELM combined with preprocessed least squares QR decomposition (PLSQR+ELM), are trained. Three important 

parameters, mass damping ratio, Reynolds number and mass ratio, are extracted by partial least square (PLS) method 

to characterize VIV of circular cylinder. The results show that the prediction results of the three algorithms are 

acceptable when there is no noise interference. However, when noise is taken into account, PLSQR+ELM has the 

most economical and efficient performance. 
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1. INTRODUCTION 

Vortex-induced vibration (VIV) of circular cylinders is of practical interest to many fields of 

engineering, such as civil engineering, marine engineering, and mechanical engineering. Therefore, 

VIV has been extensively studied by researchers since the 19th century from theoretical, 

experimental and numerical simulation perspectives. This is discussed in the review papers by 

Sarpkaya (2004), Williamson and Govardhan (2008) and Bearman (2011). Although considerable 

efforts have been made to study the VIV properties of cylinders, expensive and time-consuming 

wind tunnel experiments or computational fluid dynamics are essential to determine the VIV 

phenomena in circular cylinders in specific flow fields. 

 

Fortunately, an unprecedented amount of data on VIV of cylinders has been accumulated in past 

studies, which provides the basis for model building using machine learning (ML) to predict VIV 

performance. Currently, ML is being explored in various fields of wind engineering (Wu, et al. 

2022). Jin et al. (2021) conducted an initial investigation using a physically informed neural 

network (PINN) to encode the Navier-Stokes control equations directly into ML for their solution 



by automatic differentiation. Hu et al. (2020a, b) adopted ML algorithm and generative adversarial 

neural network to predict the mean and pulsating wind pressures for circular cylinders and high-

rise building surfaces, respectively.  

 

The purpose of this study is to develop ML prediction models for maximum amplitude and 

amplitude response-reduced wind speed of circular cylinders based on a large amount of previous 

reliable data. An efficient and accurate evaluation technique is provided for the VIV study of 

circular cylinders. 

 

 

2. DATA COLLECTION AND DATABASE ESTABLISHMENT 

The data from the published high-quality literature are summarized for predicting maximum 

amplitude and amplitude response-reduced wind speed curves. In this paper, 152 sets of data are 

used to predict the maximum amplitude 𝑌∗  and 132 data are available for predicting the 

amplitude curve.  

 

In this study, the Partial Least Square (PLS) method is employed to decouple the input features 

and outputs, and the importance of each parameter on the VIV performance is datamined. The PLS 

method is adopted to extract the mass-damping ratio 𝑚∗𝜁, Reynolds number 𝑅𝑒 and mass ratio 

𝑚∗  as the main factors affecting the maximum amplitude, and the contributions are 46.01%, 

40.31% and 12.71%, respectively. The data set collected in this study has a wide distribution, as 

shown in Fig. 1. 
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Figure 1. Data set: (a) maximum amplitude 𝑌∗; (b) amplitude response-reduced wind speed curves 

 

 

3. PLSQR+ELM ALGORITHM 

The extreme learning machine (ELM) is generalized single-layer feed-forward network (SLFN) 

whose hidden layer does not require tuning and only needs to find the appropriate hidden nodes to 

guarantee accuracy. To improve the robustness of ELM, a preprocessed least squares QR 

decomposition (PLSQR) regularization algorithm is introduced to optimize the ELM and the 

following equation is obtained: 
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where 𝑘 is the kth iteration, 𝜁𝑖  is a constant, and 𝐋𝐇
+  is the regularization matrix. 𝜷𝟎 is the 

truncated singular value matrix. 𝐘 is the output target. 

 

 

4. RESULTS AND DISCUSSIONS 

4.1. Maximum amplitude 𝒀∗ prediction 

In this sub-section, three machine learning algorithms, PSO+SVR, ELM and PLSQR+ELM, are 

employed to predict the amplitude 𝑌∗ of the VIV of the circular cylinder. The prediction results 

are shown in Fig. 2(a). The errors of case 1, 9 and 10 are slightly larger, however, PLSQR+ELM 

performs relatively better. The prediction results for the rest of the cases are in complete agreement 

with the experimental data, and the ELM algorithm has the smallest error in each case. Further, 

PLSQR+ELM has the highest R2=0.942, indicating the best model training performance. 

 

 
(a)                          (b)                         (c) 

 

Figure 2. Maximum amplitude prediction: (a) Noiseless; (b) SNR=25dB; (c) SNR=20dB. 

 

4.2. Generalization capability 

To verify the generalization ability of the three models, two types of Gaussian white noise with 

signal-to-noise ratios (SNR) of 25dB and 20dB are introduced in the training set. Fig. 2(b) presents 

the results for SNR=25dB. Compared with the noiseless case, the accuracy of the three models has 

decreased. However, the accuracy of PLSQR+SVR is still the highest among the three. The Fig. 

2(c) demonstrates the prediction results for SNR=20dB. The errors of the first two algorithms are 

further increased, whereas, PLSQR+ELM has the best performance. As the noise increases, the 

PSO+SVR algorithm is the most sensitive and has the weakest generalization ability. ELM is the 

next most robust. PLSQR+ELM has the most superior robustness. 

 

4.3. Amplitude response-reduced wind speed curves prediction 

For further validation, the three algorithms are developed as ML models for amplitude response-

reduced wind speed curve prediction. The patterns of the predicted curves are generally consistent 

with the actual curves as shown in Fig. 3. However, the predicted values of PSO+SVR show 

negative values, which is contrary to the physical information, as shown in Fig. 3(b). The error at 

the peak of PSO+SVR is the largest among the three algorithms as seen from the local 

magnification, which is unacceptable. Therefore, the two cases together indicate that the 

PSO+SVR performance is unstable. The error of ELM is similar to PLSQR+ELM, but it is slightly 

better in terms of peak and overall trend. In addition, the efficiency of the ELM-type algorithm is 

much higher than that of PSO+SVR. The computation time of ELM is basically around 1s, while 

PSO+SVR is basically between 100-150s. 
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Figure 3. Amplitude response-reduced wind speed curve prediction: (a) case 1; (b) case 2 

 

 

5. CONCLUSIONS 

In this study, three machine learning algorithms are employed to predict the maximum amplitude 

and amplitude response-reduced wind speed curves for VIV of a circular cylinder. The specific 

conclusions are as follows: 

 

(1) Three parameters, mass-to-damping ratio, Reynolds number and mass ratio, are extracted by 

the PLS method as the most important indicators affecting the VIV of a circular cylinder. 
 

(2) The accuracy of all three algorithms is acceptable in the maximum amplitude 𝑌∗ prediction 

case. However, when there is noise added to the training set, the prediction performance of the 

more constrained PSO+SVR drops sharply. In contrast, the robustness of PLSQR+ELM is better. 

In the amplitude response-reduced wind speed curve case, ELM has the best results and PSO+SVR 

performance is unstable. In addition, the prediction efficiency of PSO+SVR is much lower than 

that of ELM type due to the more hyperparameters of SVR. 
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